Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans: the role of thermal acclimation.

نویسندگان

  • Roberto F Nespolo
  • Leonardo D Bacigalupe
  • Pablo Sabat
  • Francisco Bozinovic
چکیده

The potential for thermal acclimation in marsupials is controversial. Initial studies suggest that the thermoregulatory maximum metabolic rate (MMR) in metatherians cannot be changed by thermal acclimation. Nevertheless, recent studies reported conspicuous seasonality in both MMR and in basal metabolic rate (BMR). We studied the role of thermal acclimation in the Chilean mouse-opossum, Thylamys elegans, by measuring MMR and BMR before and after acclimation to cold or warm conditions. Following acclimation we also measured the mass of metabolically active organs, and the activity of a key digestive enzyme, aminopeptidase-N. No significant effect of thermal acclimation (i.e. between cold- and warm-acclimated animals) was observed for body mass, MMR, body temperature or factorial aerobic scope. However, the BMR of cold-acclimated animals was 30 % higher than for warm-acclimated individuals. For organ mass, acclimation had a significant effect on the dry mass of caecum, liver and kidneys only. Stepwise multiple regression using pooled data showed that 71 % of the variation in BMR is explained by the digestive organs. Overall, these results suggest that MMR is a rather rigid variable, while BMR shows plasticity. It seems that T. elegans cannot respond to thermal acclimation by adjusting its processes of energy expenditure (i.e. thermogenic capacity and mass of metabolically active organs). The lack of any significant difference in aminopeptidase-N specific activity between warm- and cold-acclimated animals suggests that this response is mainly quantitative (i.e. cell proliferation) rather than qualitative (i.e. differential enzyme expression). Finally, as far as we know, this study is the first to report the effects of thermal acclimation on energy metabolism, organ mass and digestive enzyme activity in a marsupial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic and biogeographic relationships of the mouse opossum Thylamys (Didelphimorphia, Didelphidae) in southern South America.

Nucleotide sequence data from the mitochondrial cytochrome b gene were used to evaluate the phylogenetic relationships among mouse opossum species of the genus Thylamys. Based on approximately 1000 bp in five of the six species of the genus and including different localities for some of the species, we concluded that T. macrura from the subtropical forests of eastern Paraguay is the most primit...

متن کامل

Phylogenetic evaluation of taxonomic definition of didelphid mouse opossum of the genus Thylamys from valleys of Coquimbo region, Chile.

Only two species of Didelphidae are currently recognized in Chile, the sister species Thylamys elegans, endemic of Mediterranean ecorregion and Thylamys pallidior, the inhabitant of the Puna and desert canyons. Three subspecies have been described for T. elegans: T. e. elegans, T. e. coquimbensis and T. e. soricinus. However, a recent study based on morphological analyses, synonymized T. elegan...

متن کامل

Body size as a latent variable in a structural equation model: thermal acclimation and energetics of the leaf-eared mouse.

Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional comp...

متن کامل

Thylamys pallidior (Didelphimorphia: Didelphidae)

Thylamys pallidior (O. Thomas, 1902) is a didelphid marsupial commonly called the white-bellied fat-tailed mouse opossum. A small mouse opossum, with tricolored pelage and a white venter, it has a seasonally incrassated tail, where fat deposits, primarily at the tail base, function in food storage. It is the most widely distributed species in the genus occurring from southwestern Peru and north...

متن کامل

Cold acclimation in Peromyscus: individual variation and sex effects in maximum and daily metabolism, organ mass and body composition.

We studied metabolic and organ mass responses to thermal acclimation (7 weeks at 5 degrees C or 23 degrees C) in deer mice, Peromyscus maniculatus. Cold acclimation resulted in significantly higher maximal oxygen consumption in thermogenesis (V(O(2)max)) and daily mean oxygen consumption (V(O(2)mean)), an increase in the mass of most visceral organs, a lower absolute body fat and a marginally s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2002